9,224 research outputs found

    Theoretical Studies of Singlet Fission: Searching for Materials and Exploring Mechanisms

    Get PDF
    In this Review article, a survey is given for theoretical studies in the subject of singlet fission. Singlet fission converts one singlet exciton to two triplet excitons. With the doubled number of excitons and the longer lifetime of the triplets, singlet fission provides an avenue to improve the photoelectric conversion efficiency in organic photovoltaic devices. It has been a subject of intense research in the past decade. Theoretical studies play an essential role in understanding singlet fission. This article presents a Review of theoretical studies in singlet fission since 2006, the year when the research interest in this subject was reignited. Both electronic structure and dynamics studies are covered. Electronic structure studies provide guidelines for designing singlet fission chromophores and insights into the couplings between single‐ and multi‐excitonic states. The latter provides fundamental knowledge for engineering interchromophore conformations to enhance the fission efficiency. Dynamics studies reveal the importance of vibronic couplings in singlet fission

    Design of Small Intramolecular Singlet Fission Chromophore: An Azaborine Candidate and General Small Size Effects

    Get PDF
    We report the first attempt to design small intramolecular singlet fission chromophores, with the aid of quantum chemistry and explicitly simulating the time evolution of state populations using quantum dynamics method. We start with three previously proposed azaborine-substituted intermolecular singlet fission chromophores. Through analyzing their frontier orbital amplitudes, we select a BN-substituted azulene as the building block. Covalently connecting two such monomers and tuning their relative configuration, we examine three dimers. One dimer is found to be an eminent candidate: the triplet-pair state is quickly formed within 1 ps, and the two triplets are ready to be disentangled. We elucidate the general small size effects in intramolecular singlet fission and focus on specific aspects which should be taken care of when manipulating the fission rate through steric hindrance

    Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation

    Full text link
    This paper concerns the well-posedness theory of the motion of physical vacuum for the compressible Euler equations with or without self-gravitation. First, a general uniqueness theorem of classical solutions is proved for the three dimensional general motion. Second, for the spherically symmetric motions, without imposing the compatibility condition of the first derivative being zero at the center of symmetry, a new local-in-time existence theory is established in a functional space involving less derivatives than those constructed for three-dimensional motions in \cite{10',7,16'} by constructing suitable weights and cutoff functions featuring the behavior of solutions near both the center of the symmetry and the moving vacuum boundary.Comment: To appear in Arch. Rational Mech. Ana

    General formalism for vibronic Hamiltonians in tetragonal symmetry and beyond

    Get PDF
    We derive general expansion formulas in vibrational coordinates for all bimodal Jahn–Teller and pseudo-Jahn–Teller Hamiltonians in tetragonal symmetry. Symmetry information of all the vibronic Hamiltonian matrix elements is fully carried by up to only 4 eigenvalues of symmetry operators. This problem-to-eigenvalue reduction enables us to handle thousands of vibronic problems in one work. The derived bimodal formulas can be easily extended to cover problems with one or more than two vibrational modes. They lay a solid foundation for future vibronic coupling studies of tetragonal systems. More importantly, the efficient derivation can be applied to handle (pseudo-)Jahn–Teller Hamiltonians for all problems with one principal symmetry axis
    • 

    corecore